Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 1

Question:

Use interval bisection to find the positive square root of $x^{2}-7=0$, correct to one decimal place.

Solution:

$x^{2}-7=0$

So roots lies between 2 and 3 as $f(2)=-3$ and $f(2)=+$ Using table method.

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\frac{\mathrm{f}(a+b)}{2}$
2	-3	3	+2	2.5	-0.75
2.5	-0.75	3	+2	2.75	0.5625
2.5	-0.75	2.75	0.5625	2.625	-0.109375
2.625	-0.109375	2.75	0.5625	2.6875	0.2226562
2.625	-0.109375	2.6875	0.2226562	2.65625	0.055664
2.625	-0.109375	2.65625	0.055664	2.640625	-0.0270996

Hence $x^{2}-7=0$ when $x=2.6$ to 1 decimal place
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 2

Question:

a Show that one root of the equation $x^{3}-7 x+2=0$ lies in the interval $[2,3]$.
b Use interval bisection to find the root correct to two decimal places.

Solution:

a $\mathrm{f}(2)=8-14+2=-4 \quad \mathrm{f}(x)=x^{3}-7 x+2$

$$
f(3)=27-21+2=+8
$$

Hence change of sign, implies roots between 2 and 3.
b Using table method.

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\frac{\mathrm{f}(a+b)}{2}$
2	-4	3	+8	2.5	0.125
2	-4	2.5	0.125	2.25	-2.359375
2.25	-2.359375	2.5	0.125	2.375	-1.2285156
2.375	-1.2285156	2.5	0.125	2.4375	-0.5803222
2.4375	-0.5803222	2.5	0.125	2.46875	-0.2348938
2.46875	-0.2348938	2.5	0.125	2.484375	-0.0567665
2.484375	-0.0567665	2.5	0.125	2.4921875	0.0336604
2.484375	-0.0567665	2.4921875	0.0336604	2.4882813	-0.0116673

Hence $x=2.49$ to 2 decimal places.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 3

Question:

a Show that the largest positive root of the equation $0=x^{3}+2 x^{2}-8 x-3$ lies in the interval $[2,3]$.
b Use interval bisection to find this root correct to one decimal place.

Solution:

a $\mathrm{f}(2)=8+8-16-3=-3 \quad \mathrm{f}(x)=x^{3}+2 x^{2}-8 x-3$

$$
f(3)=27+18-24-3=18
$$

Change of sign implies root in interval [2,3]
b

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\mathrm{f}\left(\frac{a+b}{2}\right)$
2	-3	3	18	2.5	5.125
2	-3	2.5	5.125	2.25	0.51562
2	-3	2.25	0.515625	2.125	-1.37304
2.125	-1.3730469	2.25	0.515625	2.1875	-0.46215

Hence solution $=2.2$ to 1 decimal place
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 4

Question:

a Show that the equation $\mathrm{f}(x)=1-2 \sin x$ has one root which lies in the interval $[0.5,0.8]$.
b Use interval bisection four times to find this root. Give your answer correct to one decimal place.

Solution:

a $\mathrm{f}(0.5)=+0.0411489$
$f(0.8)=-0.4347121$
Change of sign implies root between 0.5 and 0.8
b

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\frac{\mathrm{f}(a+b)}{2}$
0.5	0.0411489	0.8	-0.4347121	0.65	-0.2103728
0.5	0.0411489	0.65	-0.2103728	0.575	-0.0876695
0.5	0.0411489	0.575	-0.0876696	0.5375	-0.0239802

0.5 to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 5

Question:

a Show that the equation $0=\frac{x}{2}-\frac{1}{x}, x>0$, has a root in the interval $[1,2]$.
b Obtain the root, using interval bisection two times. Give your answer to two significant figures.

Solution:

a $\mathrm{f}(1)=-0.5 \quad p=\frac{1}{2}+x-\frac{1}{x}$
$f(2)=+0.5$

Change of sign implies root between interval [1,2]
b

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\mathrm{f}\left(\frac{a+b}{2}\right)$
1	-0.5	2	+0.5	1.5	0.0833
1	-0.5	1.5	0.083	1.25	-0.175
1.25	-0.175	1.5	0.083	1.375	-0.0397727
1.375	-0.0397727	1.5	0.083	1.4375	0.0230978

Hence $x=1.4$ to 2 significant figures
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise A, Question 6

Question:

$\mathrm{f}(x)=6 x-3^{x}$

The equation $\mathrm{f}(x)=0$ has a root between $x=2$ and $x=3$. Starting with the interval $[2,3]$ use interval bisection three times to give an approximation to this root.

Solution:

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\mathrm{f}\left(\frac{a+b}{2}\right)$
2				2.5	-0.588457
2	3	3	-9	2.25	1.65533
2.25	1.6553339	2.5	-0.5884572	2.375	0.66176
2.375	0.6617671	2.5	-0.5884572	2.4375	0.0708
2.4375	0.0709769	2.5	-0.5844572	2.46875	-0.2498
2.4375	0.0709769	2.46875	-0.2498625	2.453125	-0.08726
2.4375	0.0709769	2.453125	-0.0872613	2.4453125	-0.0076

2.4 correct to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 1

Question:

a Show that a root of the equation $x^{3}-3 x-5=0$ lies in the interval $[2,3]$.
b Find this root using linear interpolation correct to one decimal place.

Solution:

a $\mathrm{f}(2)=8-6-5=-3 \quad \mathrm{f}(x)=x^{3}-3 x-5$

$$
f(3)=27-9-5=+13
$$

Change of size therefore root in interval [2,3]
b Using linear interpolation and similar triangle taking x_{1} as the first root.

$$
\frac{3-x_{1}}{x_{1}-2}=\frac{3}{13} \quad x=\frac{a \mathrm{f}(b)-b \mathrm{f}(a)}{\mathrm{f}(b)-\mathrm{f}(a)}
$$

SO

$$
\begin{aligned}
13\left(3-x_{1}\right) & =3\left(x_{1}-2\right) \\
39-13 x_{1} & =3 x_{1}-6 \\
16 x_{1} & =45 \\
x_{1} & =2.8125 \quad \mathrm{f}\left(x_{1}\right)=8.8098
\end{aligned}
$$

Using interval (2, 2.8125)

$$
\begin{aligned}
\frac{2.8125-x_{2}}{x_{2}-2} & =\frac{3}{8.8098} \\
x_{2} & =2.606 \quad \mathrm{f}\left(x_{2}\right)=4.880
\end{aligned}
$$

Using interval $(2,2.606)$

$$
\begin{aligned}
\frac{2.606-x_{3}}{x_{3}-2} & =\frac{3}{4.880} \\
x_{2} & =2.375 \quad \mathrm{f}\left(x_{2}\right)=1.276
\end{aligned}
$$

Using interval (2, 2.375)

$$
\begin{aligned}
\frac{2.375-x_{4}}{x_{4}-2} & =\frac{3}{1.276} \\
x_{2} & =2.112 \quad \mathrm{f}\left(x_{4}\right)=-1.915
\end{aligned}
$$

Using interval (2.112, 2.375)

$$
\begin{aligned}
\frac{2.375-x_{5}}{x_{5}-2.112} & =\frac{1.915}{1.276} \\
& =2.218 \quad \mathrm{f}\left(x_{5}\right)=-0.736
\end{aligned}
$$

Using interval (2.218, 2.375)

$$
\begin{aligned}
\frac{2.375-x_{6}}{x_{6}-2.218} & =\frac{0.736}{1.276} \\
& =2.318 \quad \mathrm{f}\left(x_{6}\right)=0.494
\end{aligned}
$$

Using interval (2.218, 2.318)

$$
\begin{aligned}
\frac{2.318-x_{7}}{x_{7}-2.218} & =\frac{0.736}{0.494} \\
& =2.25 \quad \mathrm{f}\left(x_{7}\right)=-0.229
\end{aligned}
$$

2.3 to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 2

Question:

a Show that a root of the equation $5 x^{3}-8 x^{2}+1=0$ has a root between $x=1$ and $x=2$.
b Find this root using linear interpolation correct to one decimal place.

Solution:

a $\mathrm{f}(1)=5-8+1=-2 \quad \mathrm{f}(x)=5 x^{3}-8 x^{2}+1$

$$
f(2)=40-32+1=+9
$$

Therefore root in interval [1, 2] as sign change.
b Using linear interpolation.

$$
\begin{aligned}
\frac{2-x_{1}}{x_{1}-1} & =\frac{2}{9} \\
x_{1} & =1.818 \quad \mathrm{f}\left(x_{1}\right)=4.612 .
\end{aligned}
$$

Using interval $(1,1.818)$

$$
\begin{aligned}
\frac{1.818-x_{2}}{x_{2}-1} & =\frac{2}{4.612} \\
x_{2} & =1.570 \quad \mathrm{f}\left(x_{2}\right)=0.647
\end{aligned}
$$

Using interval (1, 1.570)
$\frac{1.570-x_{3}}{x_{3}-1}=\frac{2}{0.647}$

$$
x_{3}=1.139 \quad \mathrm{f}\left(x_{3}\right)=-1.984
$$

Using interval (1.139, 1.570)

$$
\begin{aligned}
\frac{1.570-x_{4}}{x_{4}-1.139} & =\frac{1.984}{0.647} \\
x_{4} & =1.447 \quad \mathrm{f}\left(x_{4}\right)=-0.590
\end{aligned}
$$

Use interval (1.447, 1.570)

$$
\begin{aligned}
\frac{1.570-x_{5}}{x_{5}-1.447} & =\frac{0.590}{0.647} \\
& =1.511 \quad \mathrm{f}\left(x_{5}\right)=-0.0005 .
\end{aligned}
$$

Ans 1.5 correct to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 3

Question:

a Show that a root of the equation $\frac{3}{x}+3=x$ lies in the interval [3, 4].
b Use linear interpolation to find this root correct to one decimal place.

Solution:

a $\mathrm{f}(3)=1 \quad \mathrm{f}(x)=\frac{3}{x}+3-x$

$$
f(4)=-0.25
$$

Hence root as sign change in interval [3, 4]
b Using linear interpolation

$$
\begin{aligned}
\frac{4-x_{1}}{x_{1}-3} & =\frac{0.25}{1} \\
x_{1} & =3.8 \quad \mathrm{f}\left(x_{1}\right)=-0.011
\end{aligned}
$$

Using interval [3, 3.8]

$$
\begin{aligned}
\frac{3.8-x_{2}}{x_{2}-3} & =\frac{0.0111}{1} \\
x_{2} & =3.791 \quad \mathrm{f}\left(x_{2}\right)=-0.0004579
\end{aligned}
$$

Ans $=3.8$ to 1 decimal place
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 4

Question:

a Show that a root of the equation $2 x \cos x-1=0$ lies in the interval $[1,1.5]$.
b Find this root using linear interpolation correct to two decimal places.

Solution:

a $f(1)=0.0806$
$f(1.5)=-0.788$

Hence root between $(1,1.5)$ as sign change
b Using linear interpolation
$\frac{1.5-x_{1}}{x_{1}-1}=\frac{0.788}{1}$
$x_{1}=1.280 \quad \mathrm{f}(1.280)=-0.265$

Use interval [1, 1.28]

$$
\begin{aligned}
\frac{1.28-x_{2}}{x_{2}-1} & =\frac{0.265}{1} \\
x_{2} & =1.221 \quad \mathrm{f}(1.221)=-0.164
\end{aligned}
$$

Use interval [1, 1.221]

$$
\begin{aligned}
\frac{1.221-x_{2}}{x_{3}-1} & =\frac{0.164}{1} \\
x_{3} & =1.190 \quad \mathrm{f}(1.190)=-0.115
\end{aligned}
$$

Use interval [1, 1.190]

$$
\begin{aligned}
\frac{1.190-x_{4}}{x_{4}-1} & =\frac{0.115}{1} \\
x_{4} & =1.170 \quad \mathrm{f}(1.170)=0.088
\end{aligned}
$$

Use interval [1, 1.170]

$$
\begin{aligned}
\frac{1.170-x_{5}}{x_{5}-1} & =\frac{0.088}{1} \\
x_{5} & =1.156 \quad \mathrm{f}(1.156)=-0.068
\end{aligned}
$$

Root 1.10 to 2 decimal places.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 5

Question:

a Show that the largest possible root of the equation $x^{3}-2 x^{2}-3=0$ lies in the interval [2,3].
b Find this root correct to one decimal place using interval interpolation.

Solution:

a $\mathrm{f}(2)=8-8-3=-3 \quad \mathrm{f}(x)=x^{3}-2 x^{2}-3$

$$
f(3)=27-18-3=6
$$

Hence root lies in interval [2,3] and $\forall x \in x \geq 3 \mathrm{f}(x)<0$.
b Using linear interpolation

$$
\begin{aligned}
\frac{3-x_{1}}{x_{1}-2} & =\frac{6}{3} \\
x_{1} & =2.333 \quad \mathrm{f}\left(x_{1}\right)=-1.185 \\
\frac{3-x_{2}}{x_{2}-2.333} & =\frac{6}{1.185} \\
x_{2} & =2.443 \quad \mathrm{f}\left(x_{2}\right)=-0.356 \\
\frac{3-x_{3}}{x_{3}-2.443} & =\frac{6}{0.356} \\
x_{3} & =2.474 \quad \mathrm{f}\left(x_{3}\right)=-0.095 \\
\frac{3-x_{4}}{x_{4}-2.474} & =\frac{6}{0.095} \\
x_{4} & =2.482
\end{aligned}
$$

Hence root $=2.5$ to $1 \mathrm{~d} . \mathrm{p}$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise B, Question 6

Question:

$\mathrm{f}(x)=2^{x}-3 x-1$

The equation $\mathrm{f}(x)=0$ has a root in the interval $[3,4]$.

Using this interval find an approximation to x.
Solution:

Let root be α
$f(3)=-2$
$f(4)=3$
$\frac{4-\alpha}{\alpha-3}=\frac{3}{2}$
$\alpha=3.4$ is the approximation.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise C, Question 1

Question:

Show that the equation $x^{3}-2 x-1=0$ has a root between 1 and 2 . Find the root correct to two decimal places using the Newton-Raphson process.

Solution:

$\mathrm{f}(1)=-2 \quad \mathrm{f}(x)=x^{3}-2 x-1$
$\mathrm{f}(2)=3 \mathrm{f}(2)=3$ is correct

Hence root in interval [1,2] as sign change
$\mathrm{f}(x)=x^{3}-2 x-1$
$\mathrm{f}^{\prime}(x)=3 x^{2}-2$

Let $x_{0}=2$.

Then $x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$
$x_{1}=2-\frac{3}{10}$
$x_{1}=1.7$
$x_{2}=x_{1}-\frac{\mathrm{f}\left(x_{1}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)}$
$x_{2}=1.88-\frac{1.885}{8.6032}$
$=1.661$
$x_{3}=x_{2}-\frac{\mathrm{f}\left(x_{2}\right)}{\mathrm{f}^{\prime}\left(x_{2}\right)}$
$x_{3}=1.661-\frac{0.2597}{6.2767}$
$=1.6120$
$x_{4}=1.620-\frac{\mathrm{f}(1.620)}{\mathrm{f}^{\prime}(1.620)}$
$x_{4}=1.62-\frac{0.0115}{5.8732}$
$=1.618$
Solution $=1.62$ to 2 decimal places

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise C, Question 2

Question:

Use the Newton-Raphson process to find the positive root of the equation $x^{3}+2 x^{2}-6 x-3=0$ correct to two decimal places.

Solution:

```
\(\mathrm{f}(0)=-3 \quad \mathrm{f}(x)=x^{3}+2 x^{2}-6 x-3\)
\(f(1)=1+2-6-3=-6\)
\(f(2)=8+8-12-3=1\)
```

Hence root in interval [1,2]

Using Newton Raphson

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}+2 x^{2}-6 x-3 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}+4 x-6 \\
x_{0} & =2
\end{aligned}
$$

Then $x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$

$$
=2-\frac{1}{14}
$$

$$
=1.92857
$$

$$
x_{2}=1.92857-\frac{0.0404494}{12.872427}
$$

$$
=1.92857-0.00314
$$

$$
=1.9254
$$

Root $=1.93$ to 2 decimal places.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise C, Question 3

Question:

Find the smallest positive root of the equation $x^{4}+x^{2}-80=0$ correct to two decimal places. Use the Newton-Raphson process.

Solution:

$$
\begin{aligned}
\mathrm{f}(x) & =x^{4}+x^{2}-80 \\
\mathrm{f}^{\prime}(x) & =4 x^{3}+2 x
\end{aligned}
$$

Let $x_{0}=3 \quad \mathrm{f}(3)=10$
So $\quad x_{1}=3-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$

$$
x_{1}=3-\frac{10}{114}
$$

$=2.912$
Then $x_{2}=2.912-\frac{0.1768}{104.388}$

$$
=2.908
$$

Hence root $=2.91$ to 2 decimal places.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise C, Question 4

Question:

Apply the Newton-Raphson process to find the negative root of the equation $x^{3}-5 x+2=0$ correct to two decimal places.

Solution:

```
\(\mathrm{f}(x)=x^{3}-5 x+2\)
\(\mathrm{f}^{\prime}(x)=3 x^{2}-5\)
    \(\mathrm{f}(0)=2\)
\(f(-1)=-1+5+2=6\)
\(\mathrm{f}(-2)=-8+10+2=4\)
\(f(-3)=-27+15+2=-10\)
```

Hence root between interval [$-2,-3$]

Let $x_{0}=-2$

Then $x_{1}=-2-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$

$$
=-2-\frac{4}{7}
$$

$=-2.5714$
$x_{2}=-2.571-\frac{\mathrm{f}\left(x_{1}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)}$
$=-2.571-\frac{2.1394}{14.83}$
$=-2.4267$
$x_{3}=-2.4267-\frac{0.1570}{12.6662}$
$=-2.4267-0.01234$
$=-2.439$

$$
\begin{aligned}
x_{4} & =-2.439-\frac{0.00163}{12.846} \\
& =-2.4391
\end{aligned}
$$

Root $=-2.44$ correct to 2 decimal places.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise C, Question 5

Question:

Show that the equation $2 x^{3}-4 x^{2}-1=0$ has a root in the interval [2,3]. Taking 3 as a first approximation to this root, use the Newton-Raphson process to find this root correct to two decimal places.

Solution:

$\mathrm{f}(x)=2 x^{3}-4 x^{2}-1$.
$f(2)=16-16-1=-1$
$f(3)=54-36-1=17$

Sign change implies root in interval [2,3]
$\mathrm{f}^{\prime}(x)=6 x^{2}-8 x$

Let $x_{0}=3$

Then $\quad x_{1}=3-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$
$=3-\frac{17}{30}$
$=2.43$
$x_{2}=2.43-\frac{\mathrm{f}(2.43)}{\mathrm{f}^{(2.43)}}$
$=2.43-\frac{4.078}{16.05}$
$=2.43-0.254$
$=2.179$
$x_{3}=2.179-\frac{f(2.179)}{\mathrm{f}^{\prime}(2.179)}$
$=2.179-\frac{0.6998}{11.056}$
$=2.179-0.063296$
$=2.116$
$x_{4}=2.116-\frac{\mathrm{f}(2.116)}{\mathrm{f}^{\prime}(2.116)}$
$=2.116-\frac{0.0388}{9.937}=2.112$
$x_{5}=2.112-\frac{\mathrm{f}(2.112)}{\mathrm{f}^{\prime}(2.112)}$
$=2.112-\frac{-0.00084}{9.8672}$
$=2.112$

Ans $=2.11$ correct to 2 decimal place.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise C, Question 6
Question:
$\mathrm{f}(x)=x^{3}-3 x^{2}+5 x-4$

Taking 1.4 as a first approximation to a root, x, of this equation, use Newton-Raphson process once to obtain a second approximation to x. Give your answer to three decimal places.

Solution:

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}-3 x^{2}+5 x-4 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}-6 x+5
\end{aligned}
$$

Let $x_{0}=1.4$

Using Newton Raphson

$$
\begin{aligned}
x_{1} & =1.4-\frac{\mathrm{f}(1.4)}{\mathrm{f}^{\prime}(1.4)} \\
& =1.4-\frac{-0.136}{2.48} \\
& =1.4+0.0548 \\
& =1.455 \text { to } 3 \text { decimal places }
\end{aligned}
$$

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise C, Question 7

Question:

Use the Newton-Raphson process twice to find the root of the equation $2 x^{3}+5 x=70$ which is near to $x=3$. Give your answer to three decimal places.

Solution:

$$
\mathrm{f}(x)=2 x^{3}+5 x-70
$$

$f^{\prime}(x)=6 x^{2}+5$

Let $x_{0}=3$

Using Newton Raphson

$$
\begin{aligned}
x_{1} & =3-\frac{\mathrm{f}(3)}{\mathrm{f}^{\prime}(3)} \\
& =3-\frac{-1}{59} \\
& =3.02 \\
x_{2} & =3.02-\frac{\mathrm{f}(3.02)}{\mathrm{f}^{\prime}(3.02)} \\
& =3.02-\frac{0.1872}{59.72} \\
& -3.017 \text { to } 3 \text { decimal places. }
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise D, Question 1

Question:

Given that $\mathrm{f}(x)=x^{3}-2 x+2$ has a root in the interval $[-1,-2]$, use interval bisection on the interval $[-1,-2]$ to obtain the root correct to one decimal place.

Solution:

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}-2 x+2 \\
\mathrm{f}(-1) & =-1+2+2=+3 \\
\mathrm{f}(-2) & =-8+4+2=-2
\end{aligned}
$$

Hence root in interval $[-1,-2]$ as sign change

a	$\mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\frac{\mathrm{f}(a+b)}{2}$
-1	+3	-2	-2	-1.5	+1.625
-1.5	1.625	-2	-2	-1.75	0.141
-1.75	0.141	-2	-2	-1.875	-0.842
-1.75	0.141	-1.875	-0.841	-1.8125	-0.329
-1.75	0.141	-1.8125	-0.329	-1.78125	

Hence solution is -1.8 to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise D, Question 2

Question:

Show that the equation $x^{3}-12 x-7.2=0$ has one positive and two negative roots. Obtain the positive root correct to three significant figures using the Newton-Raphson process.

Solution:

$\mathrm{f}(x)=x^{3}-12 x-7.2=0$
$f(0)=-7.2$
$\mathrm{f}(-1)=3.8$
$\mathrm{f}(1)=-18.2$
$\mathrm{f}(-2)=8.8$
$f(2)=-23.2$
$\mathrm{f}(-3)=1.8$
$f(3)=-16.2$
$f(-4)=-23.2$
$\mathrm{f}(4)=8.8$
positive root between [3, 4]
negative roots between $[0,-1],[-3,-4]$ Let $x_{0}=4$
Using $x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}$
where $\mathrm{f}(x)=x^{3}-12 x-7.2$

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-12
$$

So $x_{1}=4-\frac{8.8}{36}$

$$
\begin{aligned}
& x_{1}=3.756 \text { to 3d.p. } \\
& x_{2}=3.756-\frac{0.716}{30.322} \\
& x_{2}=3.732 \\
& x_{3}=3.732-\frac{0.011}{30.323} \\
& x_{3}=3.7316
\end{aligned}
$$

Hence root $=3.73$ to 3 significant figures
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise D, Question 3

Question:

Find, correct to one decimal place, the real root of $x^{3}+2 x-1=0$ by using the Newton-Raphson process.
Solution:
$\mathrm{f}(x)=x^{3}+2 x-1$
$\mathrm{f}(0)=-1$
$f(1)=2$

Hence root interval [0, 1]

Using $\mathrm{f}(x)=x^{3}+2 x-1$

$$
\begin{aligned}
\mathrm{f}^{\prime}(x) & =3 x^{2}+2 \text { and } x_{0}=1 \\
x_{1} & =x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)} \\
x_{1} & =1-\frac{2}{5} \\
x_{1} & =0.6 \\
x_{2} & =0.6-\frac{0.416}{3.08} \\
x_{2} & =0.465 \\
x_{3} & =0.465-\frac{0.031}{2.647} \\
x_{3} & =0.453
\end{aligned}
$$

Hence root is 0.5 to 1 decimal place.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise D, Question 4

Question:

Use the Newton-Raphson process to find the real root of the equation $x^{3}+2 x^{2}+4 x-6=0$, taking $x=0.9$ as the first approximation and carrying out one iteration.

Solution:

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}+2 x^{2}+4 x-6 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}+4 x+4 \\
\mathrm{f}(0.9) & =-0.051 \\
\mathrm{f}^{\prime}(0.9) & =10.03 \\
x_{1} & =x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)} \\
& =0.9-\frac{-0.051}{10.03} \\
& =0.905 \text { to } 3 \text { decimal places }
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise D, Question 5
Question:
Use linear interpolation to find the positive root of the equation $x^{3}-5 x+3=0$ correct to one decimal place.

Solution:

$\mathrm{f}(x)=x^{3}-5 x+3$
$f(1)=-1$
$f(2)=+1$.

Hence positive root in interval [1, 2] Using linear interpolation and x, as the 1st approximation

```
\(\frac{2-x_{1}}{x_{1}-1}=\frac{1}{1}\)
\(2-x_{1}=x_{1}-1\)
    \(2 x_{1}=3\)
    \(x_{1}=1.5 \quad \mathrm{f}\left(x_{1}\right)=1.125\)
```

Then

$$
\begin{aligned}
& \frac{2-x_{2}}{x_{2}-1.5}=\frac{1}{1.125} \\
& x_{2}=1.882 \\
& \frac{\mathrm{f}}{}\left(x_{2}\right)=0.260 \\
& \frac{1.882-x_{2}}{x_{2}-1.5}=\frac{0.260}{1.125} \\
& x_{2}=1.810 \\
& \frac{\mathrm{f}}{}\left(x_{3}\right)=-0.117 \\
& \frac{1.882-x_{4}}{x_{2}-1.810}=\frac{0.260}{0.117} \\
& \\
&=1.832
\end{aligned}
$$

root $=1.8$ to 1 decimal place
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise D, Question 6
Question:
$\mathrm{f}(x)=x^{3}+x^{2}-6$.
a Show that the real root of $\mathrm{f}(x)=0$ lies in the interval $[1,2]$.
b Use the linear interpolation on the interval $[1,2]$ to find the first approximation to x.
c Use the Newton-Raphson process on $\mathrm{f}(x)$ once, starting with your answer to \mathbf{b}, to find another approximation to x, giving your answer correct to two decimal places.

Solution:

a
$\mathrm{f}(x)=x^{3}+x^{2}-6$
$\mathrm{f}(1)=-4$
$f(2)=6$

Hence root in interval [1, 2]
b

$$
\begin{aligned}
\frac{2-x_{1}}{x_{1}-1} & =\frac{6}{4} \\
x_{1} & =1.4
\end{aligned}
$$

c

$$
\begin{aligned}
x_{0} & =1.4 \\
\mathrm{f}(x) & =x^{3}+x^{2}-6 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}+2 x \\
x_{1} & =x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)} \\
& =1.4-\frac{-1.296}{8.68} \\
& =1.55 \text { to } 2 \text { decimal places }
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations

Exercise D, Question 7

Question:

The equation $\cos x=\frac{1}{4} x$ has a root in the interval [1.0, 1.4]. Use linear interpolation once in the interval [1.0, 1.4] to find an estimate of the root, giving your answer correct to two decimal places.

Solution:

$\cos x=\frac{1}{4} x \Rightarrow \mathrm{f}(x)=\frac{1}{4} x-\cos x$
$f(1)=-0.29$
$\mathrm{f}(1.4)=0.180$
$\frac{1.4-x_{1}}{x_{1}-1}=\frac{-0.290}{-0.180}$
$x_{1}=1.153$
$x_{1}=1.15$ to 2 decimal places

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Numerical solutions of equations
Exercise D, Question 8
Question:
$\mathrm{f}(x)=x^{3}-3 x-6$

Use the Newton-Raphson process to find the positive root of this equation correct to two decimal places.

Solution:

$\mathrm{f}(x)=x^{3}-3 x-6$
$f^{\prime}(x)=3 x^{2}-3$
$f(0)=-5 \quad f(1)=-7$
$f(2)=-3 \quad f(3)=+13$

Hence root in interval $[2,3]$

Let $x_{0}=2$

Then

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)} \\
& =2-\frac{-3}{9} \\
x_{1} & =2.333 \\
x_{2} & =-\frac{4.301}{16.500} \\
x_{2} & =2.297 \\
x_{3} & =2.297-\frac{0.228}{12.828} \\
x_{3} & =2.279 \\
x_{4} & =2.279-\frac{-0.000236}{12.582} \\
& =2.279+0.000019 \\
x_{4} & =2.2790
\end{aligned}
$$

Ans $=2.28$ to 2 decimal places

